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CS 267  
Dense Linear Algebra: 

Parallel Gaussian Elimination 

James Demmel 

www.cs.berkeley.edu/~demmel/cs267_Spr08 
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Outline 

• Motivation, overview for Dense Linear Algebra 

• Review Gaussian Elimination (GE) for solving Ax=b 

• Optimizing GE for caches on sequential machines 

- using matrix-matrix multiplication (BLAS) 

• LAPACK library overview and performance 

• Data layouts on parallel machines 

• Parallel Gaussian Elimination 

• ScaLAPACK library overview 

• Eigenvalue problems 

• Current Research 
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Sca/LAPACK Overview 
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Success Stories for Sca/LAPACK 

Cosmic Microwave Background
 Analysis, BOOMERanG

 collaboration, MADCAP code (Apr.
 27, 2000). 

ScaLAPACK 

• Widely used 

- Adopted by Mathworks, Cray,
 Fujitsu, HP, IBM, IMSL, NAG,
 NEC, SGI, … 

- >84M(56M in 2006) web hits
 @ Netlib (incl. CLAPACK,
 LAPACK95) 

• New Science discovered through
 the solution of dense matrix

 systems 

- Nature article on the flat

 universe used ScaLAPACK 

- Other articles in Physics
 Review B that also use it 

- 1998 Gordon Bell Prize 

- www.nersc.gov/news/reports

/newNERSCresults050703.pdf 
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Motivation  (1) 

3 Basic Linear Algebra Problems 

1. Linear Equations: Solve Ax=b for x 

2. Least Squares: Find x that minimizes ||r||2   ri
2

 where r=Ax-b 

• Statistics: Fitting data with simple functions 

3a. Eigenvalues: Find  and x where Ax =  x 

• Vibration analysis, e.g., earthquakes, circuits 

3b. Singular Value Decomposition: ATAx= 2x 

• Data fitting, Information retrieval 

Lots of variations depending on structure of A 

• A symmetric, positive definite, banded, … 
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Motivation (2)  

• Why dense A, as opposed to sparse A? 

- Many large matrices are sparse, but … 

- Dense algorithms easier to understand  

- Some applications yields large dense
 matrices 

- LINPACK Benchmark (www.top500.org) 

• “How fast is your computer?” =                                           
 “How fast can you solve dense Ax=b?” 

- Large sparse matrix algorithms often yield
 smaller (but still large) dense problems 
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Current Records for Solving Dense Systems (2007) 

                                                Gigaflops 

Machine                       n=100   n=1000   Any n  Peak   

IBM BlueGene/L                                                     478K       596K 

       (213K procs)                                          (478 Teraflops)  

                                                                             (n=2.5M) 

NEC SX 8 

      (8 proc, 2 GHz)                                  75.1                        128 

      (1 proc, 2 GHz)          2.2             15.0                          16 

… 

www.netlib.org, click on Performance Database Server 

Palm Pilot III                  .00000169 

                                    (1.69 Kiloflops) 
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Gaussian Elimination (GE) for solving Ax=b 

• Add multiples of each row to later rows to make A upper
 triangular 

• Solve resulting triangular system Ux = c by substitution 

… for each column i 

… zero it out below the diagonal by adding multiples of row i to later rows 

for i = 1 to n-1 

    … for each row j below row i 

    for j = i+1 to n 

         … add a multiple of row i to row j 

         tmp = A(j,i); 

         for k = i to n 

               A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k) 
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Refine GE Algorithm (1) 

• Initial Version 

• Remove computation of constant tmp/A(i,i) from
 inner loop.  

… for each column i 

… zero it out below the diagonal by adding multiples of row i to later rows 

for i = 1 to n-1 

    … for each row j below row i 

    for j = i+1 to n 

         … add a multiple of row i to row j 

         tmp = A(j,i); 

         for k = i to n 

               A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k) 

for i = 1 to n-1 

     for j = i+1 to n 

          m = A(j,i)/A(i,i) 

          for k = i to n 

               A(j,k) = A(j,k) - m * A(i,k) 

m 
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Refine GE Algorithm (2) 

• Last version 

• Don’t compute what we already know:                   
 zeros below diagonal in column i 

for i = 1 to n-1 

     for j = i+1 to n 

          m = A(j,i)/A(i,i) 

          for k = i+1 to n 

               A(j,k) = A(j,k) - m * A(i,k) 

for i = 1 to n-1 

     for j = i+1 to n 

          m = A(j,i)/A(i,i) 

          for k = i to n 

               A(j,k) = A(j,k) - m * A(i,k) 

Do not compute zeros 

m 
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Refine GE Algorithm (3) 

• Last version 

• Store multipliers m below diagonal in zeroed entries
 for later use 

for i = 1 to n-1 

     for j = i+1 to n 

          m = A(j,i)/A(i,i) 

          for k = i+1 to n 

               A(j,k) = A(j,k) - m * A(i,k) 

for i = 1 to n-1 

     for j = i+1 to n 

          A(j,i) = A(j,i)/A(i,i) 

          for k = i+1 to n 

               A(j,k) = A(j,k) - A(j,i) * A(i,k) 

Store m here 

m 
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Refine GE Algorithm (4) 

• Last version 

for i = 1 to n-1 

     for j = i+1 to n 

          A(j,i) = A(j,i)/A(i,i) 

          for k = i+1 to n 

               A(j,k) = A(j,k) - A(j,i) * A(i,k) 

• Split Loop 

for i = 1 to n-1 

     for j = i+1 to n 

          A(j,i) = A(j,i)/A(i,i) 

     for j = i+1 to n 

          for k = i+1 to n 

               A(j,k) = A(j,k) - A(j,i) * A(i,k) 

Store all m’s here before updating
 rest of matrix 
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Refine GE Algorithm (5) 

• Last version 

• Express using matrix operations (BLAS) 

for i = 1 to n-1 

     A(i+1:n,i) = A(i+1:n,i) * ( 1 / A(i,i) ) 

     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  

              - A(i+1:n , i) * A(i , i+1:n) 

for i = 1 to n-1 

     for j = i+1 to n 

          A(j,i) = A(j,i)/A(i,i) 

     for j = i+1 to n 

          for k = i+1 to n 

               A(j,k) = A(j,k) - A(j,i) * A(i,k) 
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What GE really computes 

• Call the strictly lower triangular matrix of multipliers
 M, and let L = I+M 

• Call the upper triangle of the final matrix U 

• Lemma (LU Factorization): If the above algorithm
 terminates (does not divide by zero) then A = L*U 

• Solving A*x=b using GE 

- Factorize A = L*U using GE                   (cost = 2/3 n3 flops) 

- Solve L*y = b for y, using substitution (cost = n2 flops) 

- Solve U*x = y for x, using substitution (cost = n2 flops) 

• Thus A*x = (L*U)*x = L*(U*x) = L*y = b as desired 

for i = 1 to n-1 

     A(i+1:n,i) = A(i+1:n,i) / A(i,i) 

     A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n) 
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Problems with basic GE algorithm 

• What if some A(i,i) is zero? Or very small? 

- Result may not exist, or be “unstable”, so need to pivot 

• Current computation all BLAS 1 or BLAS 2, but we know that
 BLAS 3 (matrix multiply) is fastest (earlier lectures…) 

for i = 1 to n-1 

     A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector) 

     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update) 

              - A(i+1:n , i) * A(i , i+1:n) 

Peak 
BLAS 3 

BLAS 2 

BLAS 1 
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Pivoting in Gaussian Elimination 

• A =  [ 0  1 ]   fails completely because can’t divide by A(1,1)=0 

          [ 1  0 ] 

• But solving Ax=b should be easy! 

•  When diagonal A(i,i) is tiny (not just zero), algorithm may

 terminate but get completely wrong answer  

• Numerical instability 

• Roundoff error is cause 

•  Cure:   Pivot (swap rows of A) so A(i,i) large 
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Gaussian Elimination with Partial Pivoting (GEPP) 
• Partial Pivoting: swap rows so that A(i,i) is largest in column 

for i = 1 to n-1 

     find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)| 
            … i.e. largest entry in rest of column i 

     if |A(k,i)| = 0 
          exit with a warning that A is singular, or nearly so 

     elseif  k != i 

          swap rows i and k of A 
     end if        

     A(i+1:n,i) = A(i+1:n,i) / A(i,i)        … each |quotient|  1 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n) 

• Lemma: This algorithm computes A = P*L*U, where P is a

 permutation matrix. 
• This algorithm is numerically stable in practice 

•  For details see LAPACK code at     
http://www.netlib.org/lapack/single/sgetf2.f 
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Problems with basic GE algorithm 

• What if some A(i,i) is zero? Or very small? 

- Result may not exist, or be “unstable”, so need to pivot 

• Current computation all BLAS 1 or BLAS 2, but we know that
 BLAS 3 (matrix multiply) is fastest (earlier lectures…) 

for i = 1 to n-1 

     A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector) 

     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update) 

              - A(i+1:n , i) * A(i , i+1:n) 

Peak 
BLAS 3 

BLAS 2 

BLAS 1 
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Converting BLAS2 to BLAS3 in GEPP 

• Blocking 

- Used to optimize matrix-multiplication   

- Harder here because of data dependencies in GEPP  

• BIG IDEA: Delayed Updates 

- Save updates to “trailing matrix” from several consecutive
 BLAS2 updates 

- Apply many updates simultaneously in one BLAS3 operation 

• Same idea works for much of dense linear algebra 

- Open questions remain 

• First Approach: Need to choose a block size b 

- Algorithm will save and apply b updates 

- b must be small enough so that active submatrix consisting
 of b columns of A fits in cache 

- b must be large enough to make BLAS3 fast 
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Blocked GEPP   (www.netlib.org/lapack/single/sgetrf.f) 

for   ib = 1 to n-1 step b     … Process matrix b columns at a time 

     end = ib + b-1                … Point to end of block of b columns  

     apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’ 

     … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I 

     A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n)         … update next b rows of U 

     A(end+1:n , end+1:n ) = A(end+1:n , end+1:n ) 

                  - A(end+1:n , ib:end) * A(ib:end , end+1:n)     

                                       … apply delayed updates with single matrix-multiply 

                                       … with inner dimension b 

(For a correctness proof, 
 see on-line notes from

 CS267 / 1996.) 
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Efficiency of Blocked GEPP  
(all parallelism “hidden” inside the BLAS) 



Outline of rest of talk 

• ScaLAPACK GEPP 

• Multicore GEPP 

• Rest of DLA what’s it like (not GEPP) 

• Missing from ScaLAPACK - projects 

• Design space more generally 

• projects 
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Explicitly Parallelizing Gaussian Elimination 

• Parallelization steps  

- Decomposition: identify enough parallel work, but not too much 

- Assignment:  load balance work among threads 

- Orchestrate: communication and synchronization 

- Mapping: which processors execute which threads (locality) 

• Decomposition 

- In BLAS 2 algorithm nearly each flop in inner loop can be done in
 parallel, so with n2 processors, need 3n parallel steps,               
 O(n log n) with pivoting 

- This is too fine-grained, prefer calls to local matmuls instead 

- Need to use parallel matrix multiplication 

• Assignment and Mapping 

- Which processors are responsible for which submatrices?  

for i = 1 to n-1 

     A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector) 

     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update) 

              - A(i+1:n , i) * A(i , i+1:n) 
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Different Data Layouts for Parallel GE 

Bad load balance: 

P0 idle after first 

n/4 steps 

Load balanced, but

 can’t easily use

 BLAS2 or BLAS3 

Can trade load balance 

and BLAS2/3  

performance by  

choosing b, but 

factorization of block 

column is a bottleneck 

Complicated addressing, 

May not want full parallelism 

In each column, row  

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 1 2 3 0 1 2 3 

0 1 2 3 

3 0 1 2 

2 3 0 1 

1 2 3 0 

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout 

3) 1D Column Block Cyclic Layout 4) Block Skewed Layout 

 The winner! 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 6) 2D Row and Column

 Block Cyclic Layout 

0 1 2 3 

Bad load balance: 

P0 idle after first 

n/2 steps 

0 1 

2 3 

5) 2D Row and Column Blocked Layout 

b 
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Distributed GE with a 2D Block Cyclic Layout 
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PDGEMM =  PBLAS matrix multiply 

Observations: 

• For fixed N, as P increasesn

 Mflops increases, but less than

 100% efficiency 

• For fixed P, as N increases,

 Mflops (efficiency) rises 

DGEMM = BLAS routine 

      for matrix multiply 

Maximum speed for PDGEMM 

     = # Procs * speed of DGEMM 

Observations: 

•   Efficiency always at least 48% 

•   For fixed N, as P increases,

 efficiency drops  

•   For fixed P, as N increases,

 efficiency increases 

Review of Parallel MatMul 

• Want Large Problem Size Per

 Processor  
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Since it can run no faster than its 

    inner loop (PDGEMM), we measure: 

Efficiency =  

     Speed(PDGESV)/Speed(PDGEMM) 

Observations: 

•  Efficiency well above 50% for large

 enough problems 

•  For fixed N, as P increases, efficiency

 decreases (just as for PDGEMM) 

•  For fixed P, as N increases efficiency

 increases (just as for PDGEMM) 

•  From bottom table, cost of solving 

• Ax=b about half of matrix multiply

 for large enough matrices. 

• From the flop counts we would

 expect it to be (2*n3)/(2/3*n3) = 3

 times faster, but communication

 makes it a little slower. 

PDGESV = ScaLAPACK Parallel LU 



3/3/2008 CS267 Guest Lecture 2 29 

ScaLAPACK Performance Models (1)  

ScaLAPACK Operation Counts 
tf   = 1 

tm = 

tv  = 

 = brow=bcol 

P = prow = pcol 
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A 

C 

A 

B C 

T TT

Fork-Join vs. Dynamic Execution 

Fork-Join – parallel BLAS 

DAG-based – dynamic scheduling 

Time  

saved 



•

•

Achieving Asynchronicity 
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Intel’s Clovertown Quad Core 
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LAPACK and ScaLAPACK Scalability 

• “One-sided Problems” are scalable 

- Linear systems Ax=b, and least squares  minx ||Ax-b||2 

- In Gaussian elimination, A factored into product of 2 matrices A =
 LU by premultiplying A by sequence of simpler matrices 

- Asymptotically 100% BLAS3 

- LU (“Linpack Benchmark”) 

- Cholesky, QR 

• “Two-sided Problems” are harder 

- Eigenvalue problems, SVD 

- A factored into product of 3 matrices by pre and post multiplication 

- ~Half BLAS2, not all BLAS3 

• Narrow band problems hardest (to do BLAS3 or parallelize) 

- Solving and eigenvalue problems 



What could go into a linear algebra library? 



Missing Routines in Sca/LAPACK 

LAPACK ScaLAPACK 

Linear 

Equations 

LU 

LU + iterative refine 

Cholesky 

LDLT 

xGESV 

xGESVX 

xPOSV 

xSYSV 

PxGESV 

missing 

PxPOSV 

missing 

Least Squares 

(LS) 

QR 

QR+pivot 

SVD/QR 

SVD/D&C 

SVD/MRRR 

QR + iterative refine. 

xGELS 

xGELSY 

xGELSS 

xGELSD 

missing 

missing 

PxGELS 

missing 

missing 

missing (intent?) 

missing 

missing 

Generalized LS LS + equality constr. 

Generalized LM 

Above + Iterative ref. 

xGGLSE 

xGGGLM 

missing 

missing 

missing 

missing 



More missing routines 
LAPACK ScaLAPACK 

Symmetric EVD QR / Bisection+Invit 

D&C 

MRRR 

xSYEV / X 

xSYEVD 

xSYEVR 

PxSYEV / X 

PxSYEVD 

missing 

Nonsymmetric EVD Schur form 

Vectors too 

xGEES / X 

xGEEV  /X 

missing (driver) 

missing  

SVD QR 

D&C 

MRRR 

Jacobi 

xGESVD 

xGESDD 

missing 

missing 

PxGESVD 

missing (intent?) 

missing 

missing 

Generalized 

Symmetric EVD 

QR / Bisection+Invit 

D&C 

MRRR 

xSYGV / X 

xSYGVD 

missing 

PxSYGV / X 

missing (intent?) 

missing 

Generalized 

Nonsymmetric EVD 

Schur form 

Vectors too 

xGGES / X 

xGGEV / X 

missing 

missing 

Generalized SVD Kogbetliantz 

MRRR 

xGGSVD 

missing 

missing (intent) 

missing 



Exploring the tuning space for Dense LA 

• Algorithm tuning space includes 

- Underlying BLAS (PHiPAC, ATLAS) 

- Different layouts (blocked, recursive, …) and algorithms 

- Numerous block sizes, not just in underlying BLAS 

- Many possible layers of parallelism, many mappings to HW  

- Different traversals of underlying DAGs 

• Synchronous and asynchronous algorithms 

- “Redundant” algorithms for GPUs 

- New and old eigenvalue algorithms 

- Mixed precision (for speed or accuracy) 

- New “communication avoiding” algorithms for variations on standard factorizations 

• Is there a concise set of abstractions to describe, generate tuning space? 

- Block matrices, factorizations (partial, tree, …), DAGs, … 

- PLASMA, FLAME, CSS, Spiral, Sequoia, Telescoping languages, Bernoulli, Rose, … 

• Question: What fraction of dense linear algebra can be generated/tuned? 

- Lots more than when we started 

• Sequential BLAS -> Parallel BLAS -> LU -> other factorizations -> … 

- Most of dense linear algebra? 

• Not eigenvalue algorithms (on compact forms) 

• What fraction of LAPACK can be done? 

• “for all linear algebra problems…” 

- For all interesting architectures…? 



Possible class projects 
• GPU related 

- Best results so far do some work on GPU, some on CPU 

- Try porting algorithms to NVIDIA GPU using CUDA 

- Explore mixed precision algorithms 

• Filling in gaps in ScaLAPACK 

- User demand for various missing routines 

• Eigenvalues routines on Multicore 

- Compare performance of LAPACK, ScaLAPACK 

- Explore multithreaded implementations (PLASMA?) 

• New “communication avoiding” QR algorithm 

- Implement, compare performance to Sca/LAPACK 

- Try in eigenvalues routines 

- Try analogous LU routine 

• Study code automation systems 

- List on previous slide 

• More at  

- www.cs.berkeley.edu/~demmel/Sca-LAPACK-Proposal.pdf  
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Extra Slides 
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Overview of LAPACK and ScaLAPACK 

• Standard library for dense/banded linear algebra 

- Linear systems: A*x=b 

- Least squares problems:  minx || A*x-b ||2 

- Eigenvalue problems: Ax = x, Ax = Bx 

- Singular value decomposition (SVD):  A = U VT 

• Algorithms reorganized to use BLAS3 as much as
 possible 

• Basis of math libraries on many computers, Matlab … 

• Many algorithmic innovations remain 

- Projects available 
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Performance of LAPACK (n=1000) 

Performance

 of  Eigen
-values,

 SVD, etc. 
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Performance of LAPACK (n=100) 

Efficiency is

 much lower
 for a

 smaller
 matrix. 
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Review: BLAS 3 (Blocked) GEPP 

for   ib = 1 to n-1 step b     … Process matrix b columns at a time 

     end = ib + b-1                … Point to end of block of b columns  

     apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’ 

     … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I 

     A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n)         … update next b rows of U 

     A(end+1:n , end+1:n ) = A(end+1:n , end+1:n ) 

                  - A(end+1:n , ib:end) * A(ib:end , end+1:n)     

                                       … apply delayed updates with single matrix-multiply 

                                       … with inner dimension b 

BLAS 3 
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Row and Column Block Cyclic Layout 

• processors and matrix blocks are

 distributed in a 2d array 

•prow-by-pcol array of processors 
•brow-by-bcol matrix blocks 

• pcol-fold parallelism in any column,

 and calls to the BLAS2 and BLAS3 on

 matrices of  size brow-by-bcol 

• serial bottleneck is eased 

• prow  pcol and brow  bcol possible,

 even desireable 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

0 1 0 1 0 1 0 1 

2 3 2 3 2 3 2 3 

bcol 

brow 
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Distributed GE with a 2D Block Cyclic Layout 

• block size b in the algorithm and the block sizes

 brow and bcol in the layout satisfy b=bcol.  

• shaded regions indicate processors busy with

 computation or  communication. 

• unnecessary to have a barrier between each step of

 the algorithm, e.g.. steps 9, 10, and 11 can be
 pipelined 
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ScaLAPACK Performance Models (2) 

(LU) 

(Cholesky) 

Compare Predictions and Measurements 
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Next release of LAPACK and ScaLAPACK 

• Class projects available 

• www.cs.berkeley.edu/~demmel/Sca-LAPACK-Proposal.pdf 

• New or improved LAPACK algorithms 

- Faster and/or more accurate routines for linear systems,
 least squares, eigenvalues, SVD 

• Parallelizing algorithms for ScaLAPACK 

- Many LAPACK routines not parallelized yet 

• Automatic performance tuning 

- Many tuning parameters in code 
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Recursive Algorithms 

• Still uses delayed updates, but organized differently 

- (formulas on board) 

• Can exploit recursive data layouts 

- 3x speedups on least squares for tall, thin matrices 

• Theoretically optimal memory hierarchy performance 

• See references at 

- “Recursive Block Algorithms and Hybrid Data Structures,”
 Elmroth, Gustavson, Jonsson, Kagstrom, SIAM Review, 2004 

- http://www.cs.umu.se/research/parallel/recursion/ 
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LU Algorithm: 
   1: Split matrix into two rectangles (m x n/2) 
          if only 1 column, scale by reciprocal of pivot & return 

   2: Apply LU Algorithm to the left part 

   3: Apply transformations to right part  
         (triangular solve A12 = L-1A12 and                 
          matrix multiplication A22=A22 -A21*A12 ) 

   4: Apply LU Algorithm to right part 

Gaussian Elimination via a Recursive Algorithm 

L A12 

A21 A22 

F. Gustavson and S. Toledo 

Most of the work in the matrix multiply  
Matrices of size n/2, n/4, n/8, … 

Source: Jack Dongarra 



02/14/2006 CS267 Lecture 9 50 

Recursive Factorizations 

• Just as accurate as conventional method 

• Same number of operations 

• Automatic variable-size blocking 

- Level 1 and 3 BLAS only ! 

• Simplicity of expression 

• Potential for efficiency while being “cache oblivious” 

- But shouldn’t recur down to single columns! 

• The recursive formulation is just a rearrangement of the point
-wise LINPACK algorithm 

• The standard error analysis applies (assuming the matrix
 operations are computed the “conventional” way). 
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LAPACK 

Recursive LU 

Recursive LU 

LAPACK 

Dual-processor 

Uniprocessor 

Source: Jack Dongarra 



02/14/2006 CS267 Lecture 9 52 

Recursive Algorithms – Limits 

• Two kinds of dense matrix compositions 

• One Sided  
- Sequence of simple operations applied on left of matrix 

- Gaussian Elimination: A = L*U or A = P*L*U 

• Symmetric Gaussian Elimination: A = L*D*LT 

• Cholesky: A = L*LT 

- QR Decomposition for Least Squares: A = Q*R 

- Can be nearly 100% BLAS 3 

- Susceptible to recursive algorithms 

• Two Sided 
- Sequence of simple operations applied on both sides,

 alternating 

- Eigenvalue algorithms, SVD 

- At least ~25% BLAS 2 

- Seem impervious to recursive approach? 

- Some recent progress on SVD (25% vs 50% BLAS2)  
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Out-of-core means 

  matrix lives on disk; 
  too big for main memory 

Much harder to hide 

  latency of disk 

QR much easier than LU 

  because no pivoting 
  needed for QR 

Out of “Core” Algorithms 

Source: Jack Dongarra 
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Some contributors (incomplete list) 
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Upcoming related talks 

• SIAM Conference on Parallel Processing in Scientific
 Computing 

- San Francisco, Feb 22-24 

- http://www.siam.org/meetings/pp06/index.htm 

- Applications, Algorithms, Software, Hardware 

- 3 Minisymposia on Dense Linear Algebra on Friday 2/24 

• MS41, MS47(*), MS56 

• Scientific Computing Seminar,  

- “An O(n log n) tridiagonal eigensolver”, Jonathan Moussa 

- Wednesday, Feb 15, 11-12, 380 Soda  

• Special Seminar 

- Towards Combinatorial Preconditioners for Finite
-Elements Problems”, Prof. Sivan Toledo, Technion 

- Tuesday, Feb 21, 1-2pm, 373 Soda 
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Extra Slides 
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Scales well,  

   nearly full machine speed 

QR (Least Squares) 
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Current algorithm: 

Faster than initial algorithm 
Occasional numerical instability 

New, faster and more stable 
    algorithm planned 

Initial algorithm: 

Numerically stable 

Easily parallelized 

Slow: will abandon 
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 The “Holy Grail” (Parlett, Dhillon, Marques) 

  Perfect Output complexity (O(n * #vectors)), Embarrassingly parallel, Accurate 

To be propagated throughout LAPACK and ScaLAPACK 

Scalable Symmetric Eigensolver and SVD 
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Have good ideas to speedup 

Project available! 

Hardest of all to parallelize 
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Scalable Nonsymmetric Eigensolver 

• Axi = i xi , Schur form A = QTQT 

• Parallel HQR  

- Henry, Watkins, Dongarra, Van de Geijn 

- Now in ScaLAPACK  

- Not as scalable as LU:    N times as many messages 

- Block-Hankel data layout better in theory, but not in ScaLAPACK 

• Sign Function   

- Beavers, Denman, Lin, Zmijewski, Bai, Demmel, Gu, Godunov,
 Bulgakov, Malyshev 

- Ai+1 = (Ai + Ai
-1)/2  shifted projector onto Re  > 0 

- Repeat on transformed A to divide-and-conquer spectrum 

- Only uses inversion, so scalable 

- Inverse free version exists (uses QRD) 

- Very high flop count compared to HQR, less stable 
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Assignment of parallel work in GE 

• Think of assigning submatrices to  threads, where
 each thread responsible for updating submatrix it
 owns 

- “owner computes” rule natural because of locality 

• What should submatrices look like to achieve load
 balance? 
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The main steps in the solution process are 

•  Fill:             computing the matrix elements of A 

•  Factor:       factoring the dense matrix A 

•  Solve:        solving for one or more excitations b 

•  Field Calc: computing the fields scattered from the

 object 

Computational Electromagnetics (MOM) 
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Analysis of MOM for Parallel Implementation 

Task            Work             Parallelism           Parallel Speed 

Fill                O(n**2)        embarrassing                      low 

Factor          O(n**3)       moderately diff.           very high 

Solve           O(n**2)        moderately diff.                   high 

Field Calc.    O(n)            embarrassing                      high 
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BLAS2 version of GE with Partial Pivoting (GEPP) 

for i = 1 to n-1 

     find and record k where |A(k,i)| = max{i <= j <= n} |A(j,i)| 

            … i.e. largest entry in rest of column i 

     if |A(k,i)| = 0 

          exit with a warning that A is singular, or nearly so 

     elseif  k != i 

          swap rows i and k of A 

     end if        

     A(i+1:n,i) = A(i+1:n,i) / A(i,i)         

                     … each quotient lies in [-1,1] 

                     … BLAS 1 

     A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n) 

                     … BLAS 2, most work in this line 
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Computational Electromagnetics – Solve Ax=b 

•Developed during 1980s, driven by defense applications 

•Determine the RCS (radar cross section) of airplane 

•Reduce signature of plane (stealth technology) 

•Other applications are antenna design, medical equipment 

•Two fundamental numerical approaches:  

•MOM methods of moments ( frequency domain) 

•Large dense matrices  

•Finite differences (time domain) 

•Even larger sparse matrices 
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Computational Electromagnetics  

image: NW Univ. Comp. Electromagnetics Laboratory  http://nueml.ece.nwu.edu/ 

- Discretize surface into triangular facets using  

 standard modeling tools 

- Amplitude of currents on surface are

 unknowns  

- Integral equation is discretized into a set of linear

 equations 
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Computational Electromagnetics (MOM) 

After discretization the integral equation has the form  

                A x = b 

    where 

A is the (dense) impedance matrix,   

x is the unknown vector of amplitudes, and  

b is the excitation vector. 

(see Cwik, Patterson, and Scott, Electromagnetic Scattering on the Intel Touchstone Delta,

 IEEE Supercomputing ‘92, pp 538 - 542) 
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Results for Parallel Implementation on Intel Delta 

Task                                                                    Time (hours) 

Fill  (compute n2 matrix entries)              9.20  

        (embarrassingly parallel but slow)  

Factor  (Gaussian Elimination, O(n3) )    8.25 

         (good parallelism with right algorithm) 

Solve  (O(n2))                                             2 .17  

         (reasonable parallelism with right algorithm)                           

Field Calc. (O(n))                                        0.12 

          (embarrassingly parallel and fast) 

The problem solved was for a matrix of size 48,672. 

 2.6 Gflops for Factor  -  The world  record in 1991. 
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Computational Chemistry – Ax =  x 

• Seek energy levels of a molecule, crystal, etc. 

- Solve Schroedinger’s Equation for energy levels = eigenvalues 

- Discretize to get Ax = Bx, solve for eigenvalues  and eigenvectors x 

- A and B large Hermitian matrices (B positive definite) 

• MP-Quest (Sandia NL) 

- Si and sapphire crystals of up to 3072 atoms 

- A and B up to n=40000, complex Hermitian 

- Need all eigenvalues and eigenvectors 

- Need to iterate up to 20 times (for self-consistency) 

• Implemented on Intel ASCI Red 

- 9200 Pentium Pro 200 processors (4600 Duals, a CLUMP) 

- Overall application ran at 605 Gflops (out of 1800 Gflops peak),  

- Eigensolver ran at 684 Gflops 

- www.cs.berkeley.edu/~stanley/gbell/index.html 

- Runner-up for Gordon Bell Prize at Supercomputing 98 
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Parallelism in ScaLAPACK 

• Level 3 BLAS block
 operations 

- All the reduction routines 

• Pipelining 

- QR Iteration, Triangular
 Solvers, classic
 factorizations 

• Redundant computations 

- Condition estimators  

• Static work assignment 

- Bisection 

• Task parallelism 

- Sign function eigenvalue
 computations 

• Divide and Conquer 

- Tridiagonal and band
 solvers, symmetric
 eigenvalue problem and
 Sign function  

• Cyclic reduction 

- Reduced system in the

 band solver  
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Winner of TOPS 500 (LINPACK Benchmark) 

Year Machine Tflops Factor
 faster 

Peak 

Tflops 

Num 

Procs 

N 

2004 Blue Gene / L, IBM 70.7 2.0 91.8 32768 .93M 

200
220
03 

Earth System
 Computer, NEC 

35.6 4.9 40.8 5104 1.04M 

2001 ASCI White,       
 IBM SP Power 3 

7.2 1.5 11.1 7424 .52M 

2000 ASCI White,        
 IBM SP Power 3   

4.9 2.1 11.1 7424 .43M 

1999 ASCI Red,         
 Intel PII Xeon 

2.4 1.1 3.2 9632 .36M  

1998 ASCI Blue,         
 IBM SP 604E 

2.1 1.6 3.9 5808 .43M 

1997 ASCI Red,         
 Intel Ppro, 200 MHz 

1.3 3.6 1.8 9152 .24M 

1996 Hitachi  CP-PACS .37 1.3 .6 2048 .10M 

1995 Intel Paragon XP/S
 MP 

.28 1 .3 6768 .13M 

Source: Jack Dongarra (UTK) 


